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Abstract
This thesis is concerned with the construction of a two-dimensional Gaussian Process (2D GP)
for fitting spatial-temporal evolutions of plasma parameters. The 2D GP regression method is
applied to artificial data and experimental data with strong temporal variations. A multiplication
of two squared exponential (SE) kernels is used to allow for different length scales along each
dimension. The spatial hyperparameters (i.e. parameters of the kernel, which determine length
and vertical scale) are optimized by maximizing the marginal likelihood. The impact of noise
and sample size is studied. The 2D GP performs better than joining multiple independent 1D
GP reconstructions of each time-slice, due to the consideration of temporal correlations. For the
optimization of the temporal length scale a new physics informed approach is developed which
calculates a time dependent length scale lt(t) using the temporal derivative of the line integrated
electron density ∂t

1
L

∫
nedL. It is observed that strong variations in lt(t) lead to oscillations in

the 2D GP reconstruction. Due to the oscillations, a fixed length scale equivalent to the temporal
resolution of the measurements lt = ∆t performes better than the time dependent length scale
lt(t). The reconstruction of partial derivatives and boundary conditions, such as a vanishing
gradient in the plasma center, is currently not included and will be addressed in future work.
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Abstract
Diese Arbeit beschäftigt sich mit der Konstruktion eines zweidimensionalen Gauß Prozesses (2D
GP) für die Regression räumlich-zeitlicher Entwicklungen von Plasmaparametern. Die 2D GP
Regressionsmethode wird auf künstliche Daten und experimentelle Daten mit starken zeitlichen
Änderungen angewendet. Ein Produkt von zwei quadratisch exponentiellen Kernel wurde ver-
wendet, um verschiedene Korrelationslängen für jede Dimension zu ermöglichen. Die räumlichen
Hyperparameter (d.h. Parameter des Kernels, welche die horizontale und vertikale Skala bestim-
men) wurden durch Maximierung der marginal likelihood optimiert. Der Einfluss von Rauschen
und Anzahl der Daten wird untersucht. Der 2D GP erzielt bessere Ergebnisse als die Verbindung
von mehreren unabhängigen 1D Rekonstruktionen eines jeden Zeitpunktes, da zeitliche Korre-
lationen beachtet werden. Für die Optimierung der zeitlichen Längenskala wurde ein neuer
physikalischer Ansatz entwickelt, der die zeitabhängige Längenskala lt(t) mithilfe der zeitlichen
Ableitung der linienintegrierten Dichte ∂t

1
L

∫
nedL berechnet. Es wird beobachtet, dass starke

Variationen in lt(t) zu Oszillationen in der 2D GP Rekonstruktion führen. Aufgrund der Oszil-
lationen erzielt die konstante Längenskala, gleich der zeitlichen Auflösung der Messung lt = ∆t,
bessere Ergebnisse als die zeitabhängige Längenskala lt(t). Die Rekonstruktion von partiellen
Ableitungen und Randbedingungen, wie ein verschwindener Gradient im Plasmazentrum, ist
aktuell nicht eingearbeitet und wird in der Zukunft adressiert.
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1 Introduction

1 Introduction

To meet the increasing demand for energy, it is advantageous to have multiple energy resources
that can replace fossil fuels [1]. In addition to green fuels such as solar and wind energy, another
option for energy production is the fusion of nuclei, the suns process of generating energy [2].
Fusion is the process by which two light nuclei combine to form a heavier nucleus. The reaction
with the highest reactivity ⟨σv⟩ is the fusion of deuterium (D = 2

1H) and tritium (T = 3
1H) [3].

In order to fuse nuclei, they must possess high kinetic energies to overcome the repulsive Coulomb
force. One method to realize fusion is by heating the fuel to a plasma state, creating an ionized
gas with free ions and electrons. Temperatures of ∼ 13 keV have to be achieved for the maximum
reaction rate R ∼ ⟨σv⟩/T 2, which is equivalent to ∼ 150 million Kelvin [3]. To prevent energy
loss of the plasma, contact with any other matter has to be avoided. Additionally, a reduction
in transport is necessary to achieve a high ion temperature Ti with a reasonable heating power,
which is done by confining the plasma in a helical magnetic field. The tokamak and stellarator
are the two main construction types for fusion reactors with magnetic confinement, with the
schematic structures shown in Fig. 1. In order to maintain the plasma particles in a confined
space, the magnetic field lines are arranged in a toroidal configuration. This utilizes the property
of plasma particles to follow magnetic field lines. The curvature of the magnetic field lines would
lead to a seperation of charges (∇B-drift). As a result an electrical field would be created, which
would cause the plasma particles to drift outwards (E × B-drift). This can be prevented by
combining a poloidal and toroidal magnetic field, resulting in a helical magnetic field.

(a) (b)

Figure 1: (a) depicts a schematic structure of tokamak. (b) displays a schematic structure of a
stellarator. The magnetic coils are shown in blue with the plasma vessel in grey. The
red arrows show the direction of the currents, the green arrows show the poloidal and
toroidal parts of the magnetic field, resulting in the magnetic field lines in black. The
violet surface shows a flux surface of the plasma. The images were provided by [4].

In order to gain better understanding of fusion in magnetic confinement and building potential
fusion reactors various experiments are conducted worldwide. Two ongoing stellarator experi-
ments are the Wendelstein 7-X (W7-X) of the Max-Planck-Institute for Plasmaphysics (IPP) in
Greifswald (Germany) and the Large Helical Device (LHD) of the National Institute for Fusion
Science (NIFS) in Toki (Japan). More precisely, LHD is a heliotron with a major radius of
R = 3.9m and an average plasma radius of a = 0.6m which utilizes a pair of intertwined helical
toroidal coils as shown in Fig. 2. It uses additional vertical field coils as well as ten pairs of
local island divertor [5]. Due to its many years of succesfull operation, LHD provides a large
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1 Introduction

repository for experimental data relating to spatio-temporal evolutions of plasma parameters,
which will be utilized later in this thesis.

Figure 2: Schematic depiction of the coil system of LHD. The pair of helical coils are shown in
blue and three pairs of circular poloidal coils are illustrated in light yellow. There are
also 10 pairs of divertor coils. The plasma flux surface is shown in pink. Courtesy of
[5].

With the aim of reaching high temperatures of ∼ 13 keV the plasma must be heated, which
requires a large amount of power. The triple product nTτE of particle density n, temperature
T and energy confinement time τE describes the fusion performance [6]. The Lawson criterion
nTτE > 0.5MJs/m3 [7] determines a minimum value for the triple product, where the power
losses are compensated by the power of the alpha particles resulting from the fusion reaction.
τE is the characteristic loss time of the energy and depends on energy transport in the plasma.
Power is lost through conduction and convection, as well as radiative power losses in the form
of bremsstrahlung [8]. The plasma density and temperature can be externally controlled by
adjusting the heating power and gas influx, whereas τE cannot be directly controlled. The
desired temperature for DT-fusion is T ∼ 13 keV with a plasma density of n ∼ 10−20m−3. To
fulfill the mentioned Lawson criterion, with the determined plasma density and temperature, τE
must reach 3 s at minimum [7]. This implies that the energy needs to be confined for more than
3 s in order to produce a power output equal to the input. Recent studies show that one way of
increasing the confinement time is the injection of hydrogen pellets into the plasma core [9]. It
is also a method for refueling the plasma, which is needed for a fusion power plant. However,
excessive pellet fueling may lead to termination of the plasma [10]. This shows the significance
of improving confinement and extending the energy confinement time, while avoiding plasma
termination.

Due to the dependence of τE on transport mechanics, it is crucial to develop a thorough under-
standing of the transport mechanics and turbulence in the plasma. The temperature and density
gradients control instabilities of the plasma [11]. Considering this aspect, the temperature gra-
dient ∇T is of interest as it influences the mechanism of particle transport, whereas the density
gradient controls diffusion. The diffusion coefficients are significant parameters, describing the
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1 Introduction

rate at which plasma particles diffuse outwards and arise in the particle flux Γ

Γ = −D∇n (1.1)

with diffusivity D. The temporal evolution of particle density n is described by the continuity
equation

∂n

∂t
= −∇ · Γ+ S

where S = S(x, t) represents the source through ionisation and recombination. The source can
also describe the fueling of the plasma through pellet injection. Using cylindrical coordinates
and substituting Γ with Eq. (1.1) we obtain the inhomogenous partial differential equation

∂n

∂t
=

1

r

∂

∂r

(
rD

∂n

∂r

)
+ S. (1.2)

It is evident that the spatial and temporal derivatives of the particle density are needed in order
to calculate the diffusion coefficients. The diffusivity D is often calculated numerically due to
its complexity [12]. It has to be noted that a number of differential equations can be derived for
different scenarios, taking into account a variety of different effects. E.g. a similar differential
equation can be derived for the heat flux q = −nχ∇T with the thermal conductivity coefficient
χ [7].

Experimental data for plasma parameters are often noisy, making it necessary to fit the data.
Another reason for fitting the data is the measurement at distinct locations and times, eventhough
in Eq. (1.2) the partial derivatives for all r and t are needed. A regression method is the Gaussian
Process (GP) [13]. In contrast to parametric regression, a GP is a non-parametric probabilistic
regression method. Thus, it is not necessary to specify a parametric function that describes
the temperature and density profiles. The GP is widely used in plasma physics for fitting noisy
plasma profiles of fusion experiments at a certain toroidal position for specific times resulting in
a one-dimensional fit (1D GP) [14, 15]. Furthermore, it can be used for reconstructing partial
derivatives, which could be used for the calculation of diffusion coefficients instead of using
numerical methods. It also enables the reconstruction of higher derivatives, such as the second
derivatives, which are needed for the description of turbulence [16]. The probabilistic nature of
the GP enables a simple way to estimate uncertainties [17]. This also applies to the uncertainty
estimation of partial derivatives. Examplary applications of a 2D GP is the reconstruction of
magnetic fields H(x, y, z) for two-dimensional spatial training data [18] and the regression of
experimental edge plasma evolution [19].

The aim of this work is to develop a method to fit the spatial-temporal evolution of plasma
parameters, such as the temperature T (r, t) and particle density n(r, t), with a two-dimensional
GP fit (2D GP) and to work out advantages and disadvantages. The overall goal of reconstructing
spatial-temporal plasma parameters is to deliver input for studies of transport dynamics and
instabilities. It is assumed that by adding a temporal dimension the temporal correlation between
data points will be taken into account. This may help to improve regressions of termination
processes, which can be faster than the temporal resolution of the measurement. Additionally,
taking the temporal dimension into account enables the calculation of partial derivatives w.r.t.
time. The spatial and temporal partial derivatives are needed in order to determine diffusion
coefficients, as well as for the classification of transport mechanics.
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2 Theoretical Background

2 Theoretical Background

2.1 Gaussian Processes for regression

The GP is a non-parametric probabilistic method used for regression and is defined as follows:

Definition: A Gaussian Process is a collection of random variables, any finite number of which
have a joint Gaussian distribution. [20]

It is based on Bayes’ theorem

posterior︷ ︸︸ ︷
p(θ|y,x) =

likelihood︷ ︸︸ ︷
p(y|x,θ)×

prior︷ ︸︸ ︷
p(θ|x)

p(y|x)︸ ︷︷ ︸
evidence

where p(y|x) (evidence) denotes the marginal likelihood

p(y|x,θ) =
∫

p(y|x,θ)p(θ|x)dθ.

The matrix x represents the independent variable and y the values of the dependent variable.
The observations (experimental data) D = (x,y) are referred to as training data and will be used
for conditioning. The vector θ contains the so called hyperparameters, which will be eludicated
later in this section. The prior shown as the grey area in Fig. 3a can be considered as the
knowledge of the process without regarding any data. It defines the range of possible outputs
and is restrained when considering data (conditioning). The prior conditioned on the data is
called posterior and is shown in Fig. 3b. The marginal likelihood serves the purpose of a
normalizing constant [20].

(a) (b)

Figure 3: (a) depicts three arbitrary functions (samples) from the prior. The functions can be
obtained by joining a large number of output values y. (b) shows three functions from
the posterior. These functions are prior functions conditioned on five noisy data points.
The shaded area depicts the 95% confidence region, respectively. The images are taken
from [20].
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2 Theoretical Background

When considering the values of the training data y = f(x) + ε with normally distributed noise
ε ∼ N (0, ε2nI) at the position x as the random variables, the GP can be viewed as a distribution
over functions. The resulting distribution

f(x) ∼ GP(m(x), k(x,x′))

is therefore fully described by its mean function m(x) and covariance function k(x,x′). The new
input values x∗ and the predictions f∗(x∗) are referred to as test data. In general, the training
data and test data can be n-dimensional. In this work, a GP fit with one-dimensional training
and test data (e.g. space x) is referred to as a 1D GP, whereas a GP fit with two-dimensional
training and test data (e.g. space x and time t) is referred to as a 2D GP. For making predictions
f∗(x∗) the prior is conditioned on the training data as shown in Fig. 3b. Consequently, the joint
distribution of y and y∗ = f∗(x∗) is[

y
y∗

]
∼ N

([
m(x)
m(x∗)

]
,

[
Kxx + ε2nI Kxx∗

Kx∗x Kx∗x∗

])
where K(x,x) = Kxx denotes the covariance matrix between training data and K(x,x∗) =
Kxx∗ with (Kxx∗)T = Kx∗x is the covariance matrix between the combination of training and
test data. The GP reconstruction is then computed by the mean of the posterior

y∗ = Kx∗x(Kxx + ε2nI)
−1y (2.1)

with the posterior covariance matrix

cov(y∗) = Kx∗x∗ −Kx∗x(Kxx + ε2nI)
−1Kxx∗ .

The predictions uncertainty (variance) can be optained from the diagonal elements of the covari-
ance matrix

∆y∗ = diag(cov(y∗)). (2.2)

Eq. (2.1) and Eq. (2.2) describe the regression result: For any x∗ (particularly for x-values aside
the x of the training data), y∗ and ∆y∗ are the most likely prediction and its uncertainty. The
values Kij of the covariance matrix are calculated by the covariance function k(x,x′) which is
referred to as a kernel and determines the correlation between a pair of variables. That is, if the
inputs x and x′ are similar, it is assumed that the outputs f(x) and f(x′) are also similar [21].
There are a lot of different kernels, which need to be specified according to the desired model.
A typical standard kernel is the squared exponential (SE) kernel

kSE(x, x
′) = σ2 exp

(
−(x− x′)2

2l2

)
. (2.3)

The parameters σ and l are called hyperparameters which need to be specified for the GP. The
hyperparameters are not like the parameters in parametric regression as they only impact the
kernel and thereby determine properties of the underlying function. While σ defines the vertical
scale of the underlying function, l sets the characteristic length scale of the underlying function.
Therefore, the hyperparameters have an influence on the rigidity of the fit. The SE kernel is
infinitely differentiable, leading to smooth GP reconstructions. It is this property that makes
Gaussian Processes a convenient tool for regression.

Hyperparameters can either be fixed or optimized. The standard method for optimizing hyper-
parameters is by maximizing the log marginal likelihood

log p(y|x,θ) = −1

2
yT (Kxx + ε2nI)

−1y − 1

2
log |Kxx + ε2nI| −

N

2
log(2π)
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2 Theoretical Background

where the first term gives the goodness of the fit, the second term is a penalty term for too
complex models and the last term functions as a normalizing constant [22]. For finding the
maximum of log p(y|x,θ) the partial derivatives ∂k/∂l and ∂k/∂σ for each hyperparameter are
needed.

For some applications the priors obtained from the SE kernel might be too smooth, for which an
Ornstein-Uhlenbeck (OU) kernel

kOU(x, x
′) = σ exp

(
−|x− x′|

l

)
could be used instead [20]. Gibbs proposed the non-stationary kernel

kGibbs(x,x
′) = σ

D∏
d=1

(
2ld(x)ld(x

′)

l2d(x) + l2d(x
′)

)1/2

exp

(
−

D∑
d=1

(xd − x′d)
2

l2d(x) + l2d(x
′)

)
(2.4)

for D dimensions d and varying length scales ld(x) respectively [23]. The prefactor is to assure
the positive definite property of a kernel. Note that for D = 1 and a constant l(x) = l(x′) the SE
kernel in Eq. (2.3) is obtained. A non-stationary Gibbs kernel for fitting plasma profiles is used
in [24], where the length scale is large in the plasma center and shorter at the plasma borders.
The three presented kernels are compared in Fig. 4 for two different values of x′, i.e. the kernels
illustrate how strong each value of x correlates to x′. The Gibbs kernel in Fig. 4 uses the cosine
function l(x) = cos(x) for varying length scales. This function was selected without any specific
reasoning. It can be seen that the varying length scale has a large effect on the Gibbs kernel and
looks different for different values of x′ as well as for different functions of l(x). Whereas the SE
and OU kernels are symmetric and are shifted according to the value of x′.

(a) (b)

Figure 4: Comparison of the SE, OU and Gibbs kernels evaluated at the points (a) x′ = 0 and
(b) x′ = 1.

Furthermore, applying a linear operator L̂ on a GP yields another GP [20]. For a zero mean GP,
it can be written

L̂f(x) ∼ GP(0, L̂k(x,x′)L̂′)

where L̂′ acts from the right site w.r.t. x′ [25]. Therefore, application of a linear operator can
be expressed by applying the linear operator to the kernel. As the derivation is a linear operator
this can be exploited to reconstruct partial derivatives along with the GP [20]. Additionally, the
inclusion of linear operators enables the inclusion of boundary conditions. In plasma physics it
is used to ensure a vanishing gradient in the center of plasma profile fits [14]. The application of
linear operators, such as derivatives, allows for the construction of kernels that are solutions of
(stochastic) partial differential equations [25, 26].
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3 Methods

3 Methods

The goal of this work is to develop a 2D GP for the regression of the spatio-temporal evolution
of plasma parameters. To test and evaluate this method, artificial data were created. Artificial
data is particularly useful when constructing a new physics informed temporal hyperparameter
to verify calculations. It is beneficial because it ensures that the calculations are proceeding as
intended. Here, the artificial data is a Gaussian

f(x, t) =
A(t)

σ
· e−

1
2(

x−µ
σ )

2

(3.1)

with the time dependent amplitude A(t), standard deviation σ = 0.3 and mean µ = 0. The
choice of the artificial data being a Gaussian is not influenced by the Gaussian form of the SE
kernel function in Eq. (2.3). It was chosen to roughly represent the radial temperature profile
of experimental measurements. The artificial data consists of the radial dimension x, which
represents the effective radius reff of the plasma and a temporal dimension t. It was created for
an equidistant space interval of x ∈ [−0.8, 0.8] with Nx points and an equidistant time interval
of t ∈ [0, 3] with Nt points to reflect both the typical effective radius of stellarators like W7-X
and LHD, and a typical plasma discharge duration, respectively. Thereby, the time dependent
amplitude is divided in three sections

A(t) =


0.25t+ 0.5 , 0 < t < 2

−2t+ 1 , 2 < t < 2.5

0 , 2.5 < t < 3.

The linear increase of amplitude in the first two seconds with an abrupt decline to zero simulates
the increase of electron or ion temperature of a plasma with an abrupt termination to test the
effectiveness of the 2D GP for fast changing data. The termination could be caused by excessive
pellet fueling. The artificial data for σ = 0.3 and µ = 0 is shown in Fig. 5.

Figure 5: Artificial Gaussian data f(x, t) with a time dependent amplitude A(t) simulating the
electron or ion temperatures of a plasma with a linear increase and an abrupt termi-
nation of the plasma. The dotted lines illustrate the profile at the times [0, 2, 2.5] s.
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3 Methods

3.1 One-dimensional Gaussian Process

In this section the already established usage of 1D GP will be outlined. For the artificial data,
the data from Eq. (3.1) at t = 0 s is used:

f(x) =
A(0)

σ
· e−

1
2(

x
σ )

2

=
0.5

σ
· e−

1
2(

x
σ )

2

(3.2)

resulting in a Nx dimensional vector of training data. As noise a constant value of ε = 0.01 is
chosen. In Fig. 6 the impact of the hyperparameters lx and σx can be seen. In the first row, σx
was kept constant at σx = 1, while lx is varied lx = [0.01, 0.1, 1, 5] (left to right). In the second
row the correlation length is kept constant at lx = 1, while varying σx = [0.01, 0.1, 1, 10]. The
shaded area represents the 95% confidence interval (i.e. two standard deviations) calculated from
the fit uncertainty as ±1.96

√
∆f∗ where ∆f∗ is calculated using Eq. (2.2). It can be seen, that

the uncertainty is small at the points where training data is given. For lx = 0.01 the GP overfits
the training data. The best fit is achieved for lx = 0.1. A correlation length too large for the
training data smoothes the function as it cannot follow the changes in f(x). A correlation length
smaller than the distance of the training data leads to overfitting as seen in Fig. 6. The small
correlation length allows the GP to find reconstructions with fast changing test data between
the given training data. The hyperparameter σx decides the variance of the underlying function.
Thus the GP cannot cover the whole range of training data for small σx. It appears that it is
not important whether σx is too large as the last two fits in the second row are similar. The
comparison of different values for the hyperparameter shows the importance of hyperparameter
selection.

Figure 6: Impact of hyperparameters lx and σx of the SE kernel for artificial Gaussian data f(x)
with a constant noise value of ε = 0.01. First row shows the variation of lx, while the
second row displays the effect of varying σx. The shaded areas depict the 95% confi-
dence interval. The green box indicates the best fit of the used fixed hyperparameter.
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3 Methods

3.2 Two-dimensional Gaussian Process

The difference between 2D GP and 1D GP lies in the dimensions of both training and test data.
An additional temporal dimension with Nt points is added compared to the 1D GP. The training
data then consists of Nx ×Nt inputs. Thus, a new kernel is needed. This new multidimensional
kernel can be constructed by multiplying two one-dimensional SE kernels [20], i.e.

kSE(x, t,x
′, t′) = kSE,x(x,x

′)kSE,t(t, t
′) = σ2

x exp

(
−1

2

(
x− x′

lx

)2
)
σ2
t exp

(
−1

2

(
t− t′

lt

)2
)

is a new kernel with four hyperparameters lx, σx, lt and σx, allowing for different correlation
lengths for each dimension. The kernel above can be also derived from the Gibbs kernel in Eq.
(2.4) with D = 2 representing one spatial and a temporal dimension with constant characteristic
length scales, respectively.

3.2.1 Optimization of spatial hyperparameter

Here, the hyperparameter optimization for 2D GP consists of two steps. First, the optimization
of the spatial hyperparameters lx and σx is implemented by maximizing the marginal likelihood,
as in the 1D GP. As seen in section 3.1 the hyperparameter lx determines the correlation length
in the spatial dimension, whereas σx defines the variance. As the training data is a Nx × Nt

matrix the covariances would be stored in a covariance tensor Kxx of size (Nx × Nt)
2. For

the purpose of maximizing the marginal likelihood, the inverse K−1
xx and determinant |Kxx| of

the covariance tensor are needed. For easier computation, the covariance tensor is reshaped,
resulting in a matrix Kxx where the covariance matrices for each time-slice are aligned next to
each other. However, when calculating the determinant |Kxx| the logarithm of the marginal
likelihood diverges towards infinity. This is suspected to occur due to the calculation of the
logarithm of the determinant of Kxx. In general, the computational cost scales as O(N3) [20],
which can pose a problem for large training data size, as is the case with 2D GPs. In general,
values of the covariance matrix are < 1, hence the determinant will be close to zero (singular),
respectively

lim
N→∞

|Kxx| = 0.

So it can be concluded that for large sizes of training data the determinant of Kxx approaches
zero, therefore the logarithm diverges towards negative infinity. As a work around, the marginal
likelihood was calculated for a single time-slice. Consequently, the covariance matrix is N2

x

dimensional, similar to the 1D case, which significantly reduces the computational cost. Alter-
natively, [20] proposes the addition of a small multiple of the identity matrix for avoiding the
convergence to zero. However, this approach and its effect on the marginal likelihood was not
tested in this work and is left open for future research.

3.2.2 Optimization of temporal hyperparameter

The plasma parameter can vary strongly whith time, which leads to the idea of using a time
dependent temporal hyperparameter lt = l(t), enabling the regression of fast and slow changes.
Optimizing the temporal correlation length by maximizing the marginal likelihood would result in
a constant correlation length, which cannot capture the different length scales. In this section, it
will be attempted to construct a function l(t), that enables a variation of the temporal correlation
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length for the temporal variation of the plasma parameters. To ensure that the correlation length
encaptures fast changes of the plasma parameter, the hyperparamater needs to be small for large
changes and vice versa. The rate of change can be derived from the partial deriviation of the
plasma parameter with respect to time.

In case of fitting the spatio-temporal evolution of the electron density ne measured by Thomson
scattering [27], the time derivative of the line integrated density 1/L

∫
nedL will be needed.

The line integrated density represents the averaged electron density and is measured with an
interferometer [28]. Therefore, the hyperparameter is calculated by

l̃(t) =

∣∣∣∣ ∂∂t
(
1

L

∫
ne dL

)∣∣∣∣−1

(3.3)

with L = 2a being the length of the laser path through the system. The maximum possible
temporal correlation time τ will be defined by the energy confinement time τE as this param-
eter indicates how long energy is confined in the plasma [7]. Temporal changes of transport
phenomena occur on this timescale. Therefore, the maximum of lt(t) is chosen to be

max(l(t)) = 3τE (3.4)

for a stationary plasma. A stationary plasma is a plasma with constant energy, temperature
and density. A good estimate for τE in W7-X and LHD is ∼ 100ms [29, 30]. Therefore, in
the following first implementation the maximum of lt(t) will be kept fixed to 300ms. For the
minimum of lt(t) the temporal resolution ∆t of the measured data is chosen, i.e.

min(l(t)) = ∆t. (3.5)

As seen in Fig. 6 a correlation length smaller than the temporal resolution would lead to
overfitting of the reconstruction. For the considered data of electron density, the temporal
resolution is ∆t ∼ 30ms. The hyperparameter will be scaled using Eq. (3.4) and (3.5) resulting
in

l(t) =
3τE −∆t

max(l̃(t))
l̃(t) + ∆t.

It is important to note that Eq. (3.3) is not defined, when the partial time derivative is zero,
i.e. if the plasma is stationary or if the evolution of the plasma parameter has an extremum.
For a stationary plasma the hyperparameter should be large, to ensure a long correlation, while
for extrema a small correlation length is needed. Furthermore, a stationary plasma or extremum
was defined for 5% deviation of ∂t(1/L

∫
nedL) = 0. This results in the function

l(t) =


3τE , stationary
∆t , extremum
3τE−∆t

max(l̃(t))
l̃(t) + ∆t , else

where l̃(t) is described by Eq. (3.3). With this construction lt(t) > 0 for all t, which is why the
prefactor in the Gibbs kernel in Eq. (2.4) is ignored for the first application.
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4 Results

4.1 Application to noisy trivial data

For the analysis of the 2D GP it was first applied to trivial training data f(x, t) = 1 + ε where
the noise is ε ∼ N (0, 0.1) for an equidistant grid of x ∈ [0, 10] and t ∈ [0, 10]. Therefore, the
uncertainty of the artificial data is ∆f = 0.1. We want to test the convergence behaviour of the
fit and see if the mean of the fit converges to m(f) = 1 despite the noise. The hyperparameters
are kept constant at [lx, σx] = [10, 1] and [lt, σt] = [10, 1] to ensure that the correlation length
spans the complete training data and thereby preventing the noise being fitted. The number of
training data is varied to N = Nx ×Nt = [52, 102, 202, 302, 402, 502, 602]. The test data is kept
fixed to N∗ = 602. In Fig. 7 the training data, the 2D GP fit as well as its uncertainty and
the residuals for N = 102 and N = 602 are shown. When looking at the 2D GP fit of Fig. 7a2
and Fig. 7b2 a constant value of the reconstruction f∗ ≈ 1 for all x∗ and t∗ can be seen. This
corresponds to the mean m(f) = 1 of the trivial training data.

Figure 7: (a1) and (b1) show the trivial training data f(x, t) with normally distributed noise ε ∼
N (0, 0.1), uncertainty ∆f = 0.1 and their 2D GP reconstruction f∗(x, t) is displayed
in (a2) and (b2). The residuals R(x, t) are depicted in (a3) and (b3). (a4) and (b4)
show the uncertainties ∆f∗(x, t). The two columns differ in the size of training data
as (a) has N = 102 and (b) has N = 602.

The residuals
R(x, t) = f∗(x∗, t∗)− f(x, t) (4.1)

compare the reconstruction by the 2D GP f∗(x∗, t∗) to the training data f(x, t). In this case,
they give the deviation from the GP fit to the true value of m(f) = 1. The residuals R(x, t)

11



4 Results

of artificial Gaussian data are depicted in Fig. 7a3 and Fig. 7b3. The uncertainties of the 2D
GP fit, shown in Fig. 7a4 and Fig. 7b4, are smaller than the noise ε. The distribution of ε and
R(x, t) for some of the 2D GP’s are shown in Fig. 8. It can be seen that the normally distributed
noise is slightly reflected in the residuals, which is expected when looking at Eq. (4.1). The
distribution of residuals gets narrower as the sample size increases, meaning the GP fit converges
to the mean of the training data.

Figure 8: Distribution of noise ε for trivial training data f(x, y) = 1 + ε with ε ∼ N (0, 0.1),
as well as the resulting frequencies of residuals R of the 2D GP for different sizes of
training data N .

In addition, the mean residuals for each 2D GP fit were computed by

R =
1

N

∑√
R(x, t)2 (4.2)

and are plotted over the size N of the training data in Fig. 9. We can observe a decrease of R
until N = 302 leading to convergence to R ∼ 3 · 10−4, which coincides with the convergence of
the reconstruction to the mean. This shows a higher number of training data leads to a more
accurate reconstruction due to the higher coverage of the underlying function. There are slight
oscillations in the plot of R. The possible reason for this could be the construction of the training
data. The training data with a smaller sample size is randomly selected from the training data
with a size of N = 602. Therefore, the selection at N = 202 could have chosen training data
with less noise and, consequently, less deviation from the mean. The errors of R result from the
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propagation of uncertainty

∆R =
1

N

∑√
∆R2 =

1

N

∑√
(∆f∗ +∆f)2 (4.3)

with the fit and training data uncertainty ∆f∗ and ∆f , respectively. The fit uncertainties are
calculated using Eq. (2.2) and are summarized in Tab. 1. They range between 4 · 10−4 and
5 · 10−7 and decrease for more training data. However, the fit uncertainties exhibit fluctuations
which seem to coincide with the fluctuations in R. As the fits uncertainties are multiple orders of
magnitude smaller than the given uncertainty of the training data ∆f = 0.1, the mean residual
uncertainty is ∆R ≈ ∆f = 0.1. The values of R in Fig. 9 do not show any error bars, because
of their small values < 0.01 compared to ∆R ≈ 0.1.

In conclusion, additional training data results in smaller residuals and reduced uncertainty. How-
ever, they eventually approach a constant value rather than zero, indicating that further training
data becomes unnecessary. This demonstrates that the 2D GP can accurately reconstruct the
underlying data despite the presence of noise.

Figure 9: Mean residuals R of the 2D GP fits in dependence on the size of training data N .
Application on noisy trivial data with size of test data N∗ = 3600 for all sizes of
training data N .

Table 1: Averaged uncertainties ∆f∗ of the 2D GP reconstruction with ∆f = 0.1 for different
sizes of training data N .

N 52 102 152 202 252 302

∆f∗ 4 · 10−4 1.6 · 10−4 1.9 · 10−5 2.7 · 10−6 7 · 10−6 4 · 10−6

N 352 402 452 502 552 602

∆f∗ 1.3 · 10−6 1.2 · 10−6 5 · 10−7 4 · 10−7 2.8 · 10−7 5 · 10−7
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4.2 Application to artificial Gaussian data

4.2.1 Influence of noise

In actual measurements of plasma parameters, e.g. electron density, uncertainties of the measure-
ments exist, which need to be taken into consideration in the GP as noise. In Eq. (2.1) the noise
ε is included in the term ε2nI. The effect of noise levels needs to be analyzed. Thus, constant
noise is added to the artificial data described in section 3, acting as uncertainties of measure-
ments. The noise is set to ε ∈ [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. As already shown
in Fig. 6, the hyperparameters have an influence on the accuracy of the 2D GP reconstruction,
therefore a spatial hyperparameter optimization by maximization of the marginal likelihood was
used. While the spatial hyperparameters [lx, σx] were optimized, the temporal hyperparameters
were kept constant at [lt, σt] = [1, 1], as the temporal optimization is not yet fully elaborated.
This leads to higher residuals at the decrease of the artificial data at t = 2.5 s (see Fig. 10). The
spatial hyperparameter optimization was done as described in section 3.2.1, where the covariance
matrix is considered for one single time-slice. Due to their construction the artificial data do not
exhibit strong spatial variations. However, this is not the case for the experimental data. In this
work, it can be seen that this simplification worked well for the artificial data, as well for the
experimental data shown in section 4.3.2. This simplification should be reconsidered for other
applications with strong spatial changes.

In Fig. 10 the residuals of the GP reconstruction to the training data are shown for the noise
values ε = [0, 0.01, 0.1, 1], where it can be seen that both the absence of noise and too much
noise leads to strong deviations in the 2D GP reconstruction to the training data.

The smallest residuals are found for a minimal noise ε = 0.01. It can be assumed that the
residuals get smaller for even smaller noise levels. For ε = [0.01, 0.1, 1] the greatest deviation can
be seen at t = 2 s coinciding with a strong change in the amplitude of the artificial data. The
deviations are increased by the fixed correlation length lt = 1, as it does not allow the 2D GP to
“react” to the abrupt changes. When considering the effect of the hyperparameters, explained in
section 2, the reason for this is the presence of spurious correlations between data that do not
actually correlate. Using Eq. (4.2) the mean residuals are plotted over the given noise ε in Fig.
11. The errorbars were calculated with Eq. (4.3), therefore growing linearly due to ∆f = ε.
The residuals shown in Fig. 11 appear to converge towards a constant value of approximately
0.25. However, to test the convergence of the residuals, the residuals are also calculated for both
ε = 10 and ε = 20. The results are R(10) ≈ (0.4±0.1) and R(20) ≈ (0.56±0.25), indicating that
the residuals do not converge, when increasing the noise values. The reported errors ∆R(10) and
∆R(20) are the averaged uncertainties ∆f∗ of the GP reconstructions.

It becomes clear, that for bigger noise values the 2D GP is given more flexibility in finding the
most likely fit and therefore the residuals are bigger as well. While, as displayed in Fig. 11, the
mean residuals are minimized for noise values approaching zero, the omission of noise in the GP
leads to strong deviations in the reconstruction. In this case the calculated mean residuals of
ε = 0 is R(ε = 0) ≈ (4.11 ± 0.04) · 1011, indicating that the GP reconstruction does not fit the
data. The noise could therefore provide a necessary flexibility for the GP for finding a fitting
reconstruction. The noise of experimental training data is always given by the uncertainty of the
measurement. Additionally, the GP fits uncertainty is greater in areas where the training data
uncertainty is larger.
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Figure 10: Residuals R(x, t) of 2D GP reconstruction to artificial data (shown at the top) for
different noise values ε.

Figure 11: Mean residuals R of the training data with N = 30× 50 and test data N∗ = 50× 80
for varying noise values ε. The error bars show the errors ∆R growing linearly due
to the linear growth of ∆f = ε.
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4.2.2 Influence of sample size

For the 2D GP the size of the training data N = Nx +Nt is also of importance. As the training
data is two-dimensional, both Nx and Nt can be varied. The correlation between R and N is
shown in Fig. 12. Thereby, the size of the training data Nx/t was varied for the spatial and
temporal dimensions, respectively, while keeping the other constant at N = 100. In order to see
only the effect of the size of training data, the hyperparameter are kept fixed at [lx, σx] = [1, 1]
and [lt, σt] = [1, 1]. A constant noise value of ε = 0.1 was applied because it showed small
residuals in the previous section. Due to the chosen noise value the mean residuals are close to
0.1, which corresponds to the values in Fig. 11. For both R(Nx) and R(Nt) it can be seen that
an increasing size of training data leads to decreasing R. For a larger set of training data they
both approach the same value of mean residual R ≈ (8.412± 0.003) · 10−2 with the residuals of
Nt variation being greater than for Nx variation. The oscillations in R(Nt) could be due to the
choice of artificial training data and N . Due to a normal distribution of the training data, for
lower Nt the strong variation of amplitude at t = 2 s in the artificial data might not be sufficiently
covered.

In addition, the runtime increases with the size of the training data. Increasing the amount of
training data from Nt = 10 to Nt = 100 extends the computational time by 1.89 h due to the
increase of training data N by 9000 points.

In conclusion, the accuracy of the reconstruction of training data with a 2D GP is higher for more
training data, as the reconstruction of small changes is possible. If there are large variations in
the training data, it is beneficial to have more training data at these locations or times. However,
increasing the amount of training data results in longer GP runtimes. It is important to note
that over a certain amount of training data adding more will not necessarily improve the GP’s
performance, as the residuals approach a constant value. With respect to experimental data
of plasma parameters, the amount of training data can be increased by combining the data at
reff < 0 and reff ≥ 0 due to the radial symmetry.

Figure 12: Mean residuals R for variation of training data size Nx (triangles) and Nt (circles) at
noise ε = 0.1. The runtime of the individiual GP is indicated by the marker color.
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4.2.3 Implementation of a time dependent temporal hyperparameter

Section 3 presented a new method for determining the temporal hyperparameter lt(t), which is
applied to artificial data (see Fig. 13a) in this section. To better distuingish stationary and
non-stationary phases, the artificial data was slightly adjusted by adding a constant amplitude
in t = 0 s to t = 0.5 s. The sample size of the training data is N = 20× 60 leading to a temporal
resolution and minimum for lt(t) of ∆t = 0.05 s. The 2D GP reconstruction is displayed in Fig.
13b with the time dependent hyperparameter shown Fig. 13c.

Figure 13: (a) shows artificial training data f(x, t) with a sample size of N = 20×60. (b) displays
the 2D GP reconstruction f∗(x, t) with size of test data N∗ = 20 × 80. (c) depicts
the time dependent hyperparameter lt(t) calculated with the line integrated density
of the training data. (d) shows the residuals R(x, t) of the 2D GP reconstruction to
the training data.

The calculation of lt(t) worked as desired, as the hyperparameter is large for stationary training
data and small for large temporal changes. However, inspecting the 2D GP reconstruction
in Fig. 13b, it can be seen that the reconstruction exhibits strong oscillations, ranging from
approximately -15 to 8. These oscillations lead to large deviations from t ≈ 2.51 s to t ≈ 2.87 s,
where both the training data and the hyperparameter lt(t) suddenly decrease. The residuals in
Fig. 13d show that for all other times the 2D GP reconstruction fits well to the training data.

The observed oscillations in the 2D GP reconstruction suggest that the hyperparameter minimum
may have been chosen too small, resulting in overfitting (as seen in Fig. 6). Because of this,
the minimum and maximum of lt(t) were altered, with the boundaries listed in Tab. 2. This
test was conducted to examine the influence of different minima and maxima of lt(t) and has no
physical reason. It was found that optimization of the spatial hyperparameters by maximization
of the marginal likelihood resulted in larger and sometimes too large values when the time
dependent correlation length lt(t) is used. Therefore, spatial hyperparameters are first optimized
for a fixed value of lt and then used as fixed hyperparamaters with optimization of temporal
hyperparameters. The resulting 2D GP reconstructions as well as the residuals and corresponding
hyperparameters are depicted in Fig. 14b – 14d. In the 2D GP reconstruction it can be seen
that the increase of the minimum of lt(t) leads to a decrease of oscillations.
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Table 2: Averaged residuals R (rounded to the third decimal place) of 2D GP reconstructions of
artificial Gaussian training data for different maxima and minima of the time dependent
hyperparameter lt(t).

I II II IV V

max(lt(t)) [s] 0.06 0.15 0.3 0.3 0.3
min(lt(t)) [s] 0.06 0.05 0.05 0.15 0.25

R 0.565 1.362 2.398 0.572 0.566

As previous shown in Fig. 6 can a correlation length that is too small result in overfitting. To
test whether the sudden change of the hyperparameter lt(t) or the small value of the minimum
causes the oscillations, the maximum of lt(t) was lowered while keeping the minimum fixed. It
can be seen in Fig. 14b, that this leads to a slight decrease of oscillations as well. Additionally, as
shown in the first column of Fig. 14, the 2D GP reconstruction does not oscillate when a constant
value of lt = 0.06 s = const. is chosen for the hyperparameter, contradicting the assumption of
a too small hyperparameter. The averaged residuals R for each 2D GP reconstruction are listed
in Tab. 2. The smallest averaged residual depicts the reconstruction with fixed hyperparameter,
followed by the reconstruction with minimal changes of lt(t). The oscillations of the 2D GP
reconstruction could be decreased further when the hyperparameter minimum approaches its
maximum, resulting in a constant hyperparameter lt(t) = lt.

The implementation of a time dependent hyperparameter lt(t) lead to strong oscillations in the
2D GP reconstruction, where the hyperparameter has strong changes. In addition, the spatial
hyperparameter optimized by maximizing the marginal likelihood deviate when a time dependent
hyperparameter lt(t) is used. A comparison with a small fix hyperparameter lt = 0.06 s confirmed
that the oscillations are not the result of overfitting due to a too small hyperparameter. The os-
cillations are assumed to be caused by strong and rapid changes in lt(t). Due to the oscillations,
optimizing the temporal hyperparameter does not perform better than using a fixed hyperpa-
rameter. Optimizing the temporal hyperparameter by maximizing the marginal likelihood would
not allow for a varying length scale and therefore does not provide an alternative.
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4.3 Application of 2D GP to experimental data of LHD

A goal of the development of the 2D GP for experimental plasma physics data is a qualitative
reconstruction of fast temporal changes in the data. For a first application of the 2D GP to ex-
perimental data, we focus on the spatio-temporal evolution of the electron density ne. For that,
the LHD discharge #185880 is chosen because of its fast temporal changes in density as the in-
jection of pellets into the plasma leads to density peaking. At times [3.85, 3.91, 4.06, 4.36, 4.57] s,
a single pellet made of frozen hydrogen is injected. Parameters of this discharge, such as the
heating power of Electron Cyclotron Resonance Heating (ECRH) [31] and Neutral Beam Injec-
tion (NBI) [32] (PECRH, PNBI) and radiation power Prad, plasma energy Wdia, plasma current
Ip, electron temperature Te and line integrated electron density

∫
nedL are shown in Fig. 15.

Figure 15: Temporal evolution of discharge parameters of LHD discharge #185880: (a) heating
power of positive and negative NBI PNBI and ECRH PECRH as well as the radiation
power Prad, (b) plasma energy Wdia, (c) plasma current Ip, (d) electron temperature
Te and (e) line integrated electron density

∫
nedL. The five red dashed lines indicate

the times of pellet injection.
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The main heating source is NBI. Initially the heating power is PNBI ∼ 3.5MW, which is in-
creased to PNBI ∼ 7MW at t = 3.8 s. Before pellet injection the plasma is stationary with
the values of plasma energy and line integrated electron density being Wdia ∼ 150 kJ and∫
nedL ∼ 0.5 · 1019m−2. The plasma current is ramped up during the whole discharge. The

electron temperature peaks at the beginning of the discharge at ∼ 6.5 keV due to the ECRH
used for plasma start-up. The step-up in NBI leads to a significant increase in Wdia to 600 kJ
– 900 kJ. The periodic fluctuations in Wdia are caused by the modulation of NBI. The plasma
current increases steadily up to 27 kA. Additionaly, Ip exhibits small peaks after each pellet
injection. Te remains quasi-stationary for most of the time, but declines slightly after each pellet
injection. The line integrated electron density increases abruptly at the start of the second phase
of heating, which is further enhanced by the injection of the first pellet. Each pellet injection
results in a peak of the line integrated electron density. Between the pellet injections, the line
integrated electron density declines slowly. The end of heating results in a decline of each plasma
parameter.

4.3.1 Downsampling of training data

As mentioned in the previous section 4.2.2 the size of the training data plays an important role in
the 2D GP, because of the computational complexity scaling with O(N3) [20]. This also implies
that the runtime increases with the training data. For the reconstruction of the experimental
data, the electron density ne(r, t) measured by Thomson scattering [27] is chosen as the training
data. The chosen training data is the spatial-temporal evolution of the electron density (see Fig.
16) in the time interval t ∈ [3.3, 5.2] s, in which the plasma is heated by NBI. For the spatial
interval reff ∈ [−0.65, 0.65] m were chosen, corresponding to the plasma boundary.

Figure 16: (a) Spatial-temporal evolution of electron density ne(r, t) of the LHD discharge
#185880. (b) Electron density profile ne(r) at t = 4.06 s indicated by the red line in
(a).

The electron density is measured with a sampling frequency of ∼ 30Hz, resulting in a total size
of N = 105× 55 = 5775. Hence, it is of importance to see if the size of the training data can be
downsampled to save on computational costs but without loosing important information. At first,
only the training data in spatial dimension was downsampled by reducing the data by a factor of
2,3,4 and 5, respectively, while keeping the temporal training data set size fixed at the initial value
of Nt = 55. For each downsampled training data the averaged mean residual ⟨R⟩ is calculated
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over five iterations and is plotted over the size of training data Nx in Fig. 17a. The mean
residuals ⟨R(Nx)⟩ and ⟨R(Nt)⟩, that are averaged over five iterations, will be referred as Rx and
Rt. Without downsampling the mean residual has a value of Rx(105) ≈ 0.4621± 0.0011. It can
be seen that Rx increases when the spatial training data is downsampled. When downsampling
Nx, the residuals steadily increase up to a value of Rx(21) ≈ 0.538±0.005, i.e. the mean residual
increased by

δ =
Rx(21)−Rx(105)

Rx(105)
=

0.538− 0.462

0.462
≈ (16.5± 1.4)%

when downsampled to the fifth of its original size. The error was calculated by propagation of
uncertainty

∆δ ≈
∣∣∣∣ ∂δ

∂Rx(105)

∣∣∣∣∆Rx(105) +

∣∣∣∣ ∂δ

∂Rx(21)

∣∣∣∣∆Rx(21) =
Rx(21)

Rx(105)2
∆Rx(105) +

∆Rx(21)

Rx(105)
≈ 1.4%.

(4.4)

(a) (b)

Figure 17: Mean residuals ⟨R⟩ of 2D GP reconstruction averaged over five iterations for down-
sampled training data from LHD discharge #185880. (a) shows Rx for downsampled
spatial training data with Nt = 55 and (b) displays Rt for downsampled temporal
training data with Nx = 35. The chosen size of test data is equivalent to the inital
size of training data N∗ = 105 × 55. The red area depicts the range of residuals Rx

and the dashed lines indicate the point with the same sizes of training data.

After downsampling the size of the spatial data, the size of temporal data is downsampled. The
choice of downsampling both Nx and Nt is not only a practical one but gives the opportunity
to assess the effect of combined downsampling on the quality of the GP reconstruction. For
the downsampling of Nt the downsampled spatial sample size is chosen to be Nx = 35 because
of the lower computational time but still small residuum. The points at Nx = 35 in Fig. 17a
and Nt = 55 in Fig. 17b (indicated by the dashed lines) represent the same point as they have
the same sizes of training data and therefore the same mean residual of Rt ≈ 0.497 ± 0.004.
Similar to Fig. 17a the mean residuals increase for downsampled Nt. Here, the training data is
downsampled twice, hence the mean residuals are much bigger. The increase of the mean residual
results in δ ≈ (220± 150)% with an error propagation calculation similar to Eq. (4.4). For the
LHD discharge #185880 the spatial resolution amounts to ∆reff ∼ 15mm and the temporal
resolution to ∆t ∼ 30ms, i.e. the spatial resolution is higher and therefore downsampling spatial
training data does not result in such high increase of mean residuals as the downsampling of the
temporal training data does. Additional to the increase of the mean residuals, there is a large
increase in the errors of R, due to bigger uncertainties of the 2D GP’s. The results are consistent
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with the results in section 4.2.2. However, there is also a reduction of the runtime needed to
calculate the 2D GP. For example, downsampling the spatial training data by a third also results
in a reduction of runtime to almost a third (11.8664 s/32.4512 s ≈ 0.37) of the initial runtime,
while the mean residual increases by δ ≈ (7.6 ± 1.2)%. If downsampling the training data is
necessary needs to be evaluated individually as it reduces the runtime at the cost of information
loss. For rapidly changing data, it is not advisable to downsample the training data as it leads
to a loss of information.

4.3.2 Comparison 2D GP vs. multiple 1D GPs

In this section the difference between 2D GP and 1D GP for two-dimensional training data
(electron density ne shown in Fig. 16) is analyzed. The training data sample size is reduced
by downsampling once in the spatial dimension, considering only every second data point. This
results in a sample size of N = 53× 52. The measurement uncertainty ∆ne is used as noise ε.

For the reconstruction with 1D GPs, the spatial data of each time-slice is fitted individually and
put together in order to achieve a 2D reconstruction. Due to the smaller dimension of the 1D GP
training data (Nx = 53), the spatial hyperparameter are optimized by maximizing the marginal
likelihood for each individual time-slice. The size of spatial test data is N∗

x = 100, resulting in a
combined fit with size N∗ = 100× 52.

In case of the 2D GP, the complete training data is fitted at once, with and without temporal
hyperparameter optimization, respectively. A size of N∗ = 100×100 is used for the test data. For
the first 2D GP reconstruction only the spatial hyperparameters are optimized by maximizing the
marginal likelihood, while the temporal hyperparameter are kept fixed at [lt, σt] = [0.03, 1]. This
chosen value for the temporal length scale is equal to the temporal resolution lt = ∆t ≈ 0.03 s,
which provided the best fit according to section 4.2.3. The hyperparameter σt is kept fixed
at σt = 1 as the variance is already optimized by σx and a factor of one has no impact on
the kernel. For comparison, the second 2D GP reconstruction is done with optimizaton of the
temporal hyperparameters. However, a temporal correlation time of τ = 0.02 s is used, in order
to reduce the range of lt(t) and therefore reduce oscillations in the reconstruction. The calculated
time dependent hyperparameter lt(t) is depicted in Fig. 18. As the spatial optimization does
not provide reliable hyperparameters after optimizing the temporal hyperparameters, the same
spatial hyperparameters [lx, σx] = [0.0769, 9.7732] used in the first 2D GP reconstruction are also
used in the second 2D reconstruction.

Fig. 19a – 19d depict the training data and the reconstructions of the 1D and both 2D GPs,
while Fig. 19e – 19h show the data and reconstructions uncertainty. The training data shows
the presence of horizontal lines of similar electron density permeating through time, indicating
the temporal correlation between the data. It can be seen, that these lines exhibit a radial
shift over time. The shifting of these lines is caused by the Shafranov shift [33]. As mentioned
in the introduction, a helical magnetic field is needed in order to prevent an outwards drift of
the plasma particles due to a seperation of charges. The plasma particles follow the helical
magnetic field lines and counteract the separation of charges. The helical currents are called
Pfisch-Schlüter current and create an additional vertical magnetic field. The overlap of the
vertical magnetic field with the radial component of the magnetic field causes the magnetic axis
to shift outwards (Shafranov shift) [7]. These lines are faintly reflected in the two 2D GPs but
not in the 1D GP, showing that temporal correlations are omitted in the reconstruction with
multiple 1D GPs. The uncertainties of the 1D GP reconstruction shown in Fig. 19f do not
display any temporal correlations as well. In all reconstructions it can be seen that the GP
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Figure 18: Behaviour of the temporal hyperparameter lt(t) used in the 2D GP reconstruction
of LHD experimental data with temporal resolution ∆t ≈ 0.0336 s and temporal
correlation time of τE = 0.02 s. The red areas display the times at which oscillations
occur in the 2D GP reconstruction, coinciding with strong variations in lt(t).

smoothes the training data, especially along reff. The 2D GP reconstruction in Fig. 19d uses the
temporal optimization with a time dependent hyperparameter lt(t). Similar to the results section
4.2.3, this 2D GP reconstruction also exhibits oscillations. At times where oscillations occur the
uncertainty is large as shown in Fig. 19h. The oscillations range from approximately -5 to 18.
In Fig. 19d the color range is limited to better display the rest of the reconstruction and enable
a comparison between reconstructions. Except for the oscillations, the 2D GP reconstructions
with and without optimization of temporal hyperparameter are similar.

In general, the 2D GP reconstruction shows temporal correlations, which are not present in the
reconstruction with multiple independent 1D GP fits for each time-slice. This behaviour is also
represented in the reconstructions uncertainties, which are of great interest when fitting plasma
parameters. Furthermore, the 2D GP reconstruction allows a larger size of test data along the
temporal dimension. Thus, the 2D GP reconstruction is an improvement over the independent
1D GP reconstructions.
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4 Results

Figure 19: (a) shows the experimentally measured electron density ne. (b), (c) and (d) depict
the 1D GP reconstruction, 2D GP reconstruction with fixed temporal hyperparameter
and 2D GP reconstruction with temporal hyperparameter optimization in this order.
(e), (f), (g) and (h) display the absolut uncertainties, respectively.
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5 Outlook

Going beyond the reconstruction of training data, the GP enables the calculation of the deriva-
tives. The partial derivatives w.r.t. to space and time are needed for the calculation of transport
dynamics as shown in the diffusion Eq. (1.2). The true spatial derivative of the 1D articifial
data in Eq. (3.2) is

∂f(x)

∂x
= −A(0)

σ3
· x · e−

1
2
( x
σ
)2 . (5.1)

This section outlines the calculation of the partial derivative using a 1D GP reconstruction.
It provides insight into how spatial and temporal derivatives can be calculated using 2D GP
reconstruction and how they could be used to determine diffusion coefficients. Fig. 20b compares
the derivative derived from the GP fit in red with the true derivative from Eq. (5.1) in black. The
GP fit derivative corresponds with the true derivative. There are slight deviations at x = −0.8
and x = 0.8, which result from the absence of training data.

Figure 20: (a) shows the GP fit of the artificial Gaussian data f(x) with hyperparameter op-
timization. (b) displays the true derivative of the artificial data and the derivative
derived by the GP. The red shaded area shows the 95% confidence interval.

The application of 1D GP on the electron density profile ne of LHD discharge #185880 at the
time t = 4.06 s, where the third pellet is injected, is depicted in Fig. 21a. For the training data,
the data at reff < 0m (low-field) was mirrored, to get a larger sample size. It can be seen that the
experimental data is very noisy and has larger measurement errors than the previous constructed
artificial data. Hence, the GP’s uncertainty is larger. Training data for reff > 0.7m are considered
as outliers and not implemented in the GP due to the unreliability of the measurements in this
region. Additionally, the boundary condition of a disappearing gradient ∂rr′eff = 0 at the plasma
center r′eff = 0 was added. Fig. 21b displays the derivative of the GP fit in red. The GP fit and
reconstructed gradient have the same uncertainty and therefore the same 95% confidence interval.
The GP partial derivative shows that the condition of the disappearing gradient is fulfilled at
r′eff = 0. For comparison, the plot also shows Matlabs finite difference method gradient() applied
to the training data. Compared to the GP derivative reconstruction, the partial derivative
calculation with a finite difference method does not have a reasonable result due to data noise.
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Figure 21: (a) shows the application of 1D GP with hyperparameter optimization to the electron
density ne. (b) compares the derivative derived by GP and the derivative by finite
difference methods. The red shaded area shows the 95% confidence interval.

The goal is an implementation of the reconstruction of the partial derivatives in the 2D GP,
as well as an implementation of boundary conditions like the gradient at the plasma center
approaching zero. With the reconstructed partial derivatives a determination of diffusivity D is
possible according to Eq. (1.2). In [34] a similar approach with a squared exponential (SE) kernel
was used to reconstruct the partial derivatives with a GP and thereby calculate the diffusivity
of the waterlevel in soil, resulting in good determinations of the diffusivity.

As applying a linear operator to a GP yields another GP, the kernel can be constructed in a way
that it satisfies a partial differential equation (PDE). One possibility for a so called convolution
kernel (more precisely heat kernel) proposed by [26] is

kn(x, t, x
′, t′;σ,D) =

σ2√
4πD(t+ t′)

exp

(
− (x− x′)2

4D(t+ t′)

)
,

which satisfies the homogeneous diffusion equation (S(x, t) = 0) in Eq. (1.2). In this approach
of physics informed kernels the diffusivity D is treated as a hyperparameter and can be esti-
mated similar to the characteristic length scale by maximization of the marginal likelihood. It
is therefore of great interest and could be compared to the calculation by partial derivatives in
future work.
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6 Summary

In plasma physics, the spatial-temporal evolution of plasma parameters is of interest for transport
studies. The goal of this work was the assessment of a 2D Gaussian Process (GP) for the fit of
spatio-temporal evolutions of plasma parameters. In this work, a 2D GP was developed using
artificial data and applied to experimental electron density measurements from the heliotron
LHD. In contrast to 1D GPs and usually applied fitting methods, the spatial and temporal
evolution can be fitted at the same time, making the description of spatio-temporal correlations
possible. For calculating the covariance matrix a product of two squared exponential kernels was
used.

The selection of spatial hyperparameters was done by maximizing the marginal likelihood. For
2D GPs, the size of training data is way larger, so the marginal likelihood log p(y|X,θ) diverges
to infinity because of the term − log |Kxx|. The covariance matrix was calculated for one time-
slice and used for all times. This approach worked for the investigated cases, when assuming that
the spatial hyperparameters do not change strongly over time. This assumption worked in this
case, but should be reconsidered when there are strong changes in the density and temperature
profiles.

An attempt was made to calculate a time dependent temporal correlation length lt(t) instead of
keeping it fixed at a constant value, using the temporal change of the line integrated electron
density 1

L

∫
nedL. The range of lt(t) was defined in the order of magnitude of ∆t ∼ 30ms and

3τE ∼ 300ms. The reconstruction showed strong oscillations when lt(t) suddenly changes. The
oscillations do not appear when a fixed correlation length of lt = ∆t is used, showing that the
oscillations occur due to strong variations in lt(t) and not because of a too small correlation
length. This can be fixed by adjusting the minimum (∆t) and maximum (3τE) of lt(t). It is
easier to adjust the maximum as the confinement time is implemented as a parameter of the
2D GP. However, when the minimum approaches the maximum and vice versa it results in a
constant hyperparameter lt(t) = lt.

In general, application of minimal noise in the 2D GP leads to reconstructions matching the
training data. The GP uncertainty and the residuals increase for greater noise values. In the
case of no noise, i.e. ε = 0, the 2D GP shows residuals in the order of magnitude of 1011. More
training data is another way to improve the 2D GP fit, but it must be considered that more
training data strongly increase the runtime. Additionally, the 2D GP approaches a constant
value of mean residuals, therefore the fit cannot be improved arbitrarily by increasing the size of
training data. It is conducted that if there are a lot of measurements, especially for the profile,
it can be considered to downsample the amount of training data to reduce computational cost.
Downsampling by a third can decrease the runtime by a third while increasing the mean residual
by δ ≈ (7.6±12.0)%. Because there are more spatial measurements than temporal measurements
when using Thomson scattering measurements, downsampling the training data in time leads
to larger mean residuals and uncertainties. When computational cost is not of importance,
downsampling the training data is not recommended in general, to keep the information contained
in the data.

By including the temporal dimension in the training data and thus in the covariance matrix,
temporal information is taken into account. There are distinguishable differences between the
reconstruction of a 2D GP and multiple combined 1D GP reconstructions. The joined 1D GPs
do not show any temporal correlation in comparison to the 2D GP. This is also true for the fit
uncertainties. We can see that the uncertainty of the 2D GP is more reasonable as it includes
more information by considering more training data.
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6 Summary

In conclusion, the 2D GP is applied as a method for fitting spatio-temporal data of plasma
parameters. It is a non-parametric regression tool, which is suited for the application in plasma
physics. Since there can be fast changes in the temporal evolution of plasma parameters, the
temporal hyperparameter has to be small. Therefore, this method is not suitable for extrapolating
the data beyond lt. Instead, it can be used for interpolation. The 2D GP proved to be useful for
the reconstruction of spatio-temporal experimental data, as it includes the temporal correlations
as opposed to the 1D GP. However, the method of optimization for temporal hyperparameters
discussed in this work, did not lead to the desired results, because of unexpected oscillations in the
reconstructed data. A re-evaluation for the correct scale of lt(t) is necessary. If the 2D GP proves
itself to be a reliable tool for investigating spatio-temporal dynamics of plasma parameters, it can
be further expanded by a reliable optimization of temporal hyperparameters. In 1D profile fitting
the disappearing flux at reff = 0 is considered when using 1D GP. As an outlook it is suggested
that for the 2D GP, this needs to be included for a more physical treatment. Furthermore, the
calculation of spatial and temporal derivatives using the 2D GP would enable the determination
of further transport dynamics, e.g. the calculation of the diffusion coefficients.
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